
On the stability of a chain reaction with respect to global and local fluctuations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 5231

(http://iopscience.iop.org/0305-4470/20/15/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 20:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen .  20 (1987) 5231-5239. Printed in the U K  

On the stability of a chain reaction with respect to global and 
local fluctuations 

F de Pasqualet, J Gorecki$$ and J Popielawskill 
+ Department of Physics, Universita ‘La Sapienza’ Roma,  Piazzale Aldo Moro 2, 1-00185 
Roma, Italy 
f Department of Chemistry, University of Manchester,  Manchester M13 9PL, U K  
I/ Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 
Warszawa, Poland 

Received 13 November 1986 

Abstract. The  stability of a chain reaction with respect t o  global a n d  local fluctuations of 
the reaction parameters is discussed within a linear model for the reaction kinetics. The 
spatial correlations in the  system are  studied for the case when the local fluctuations are  
smaller than the global one.  The time dependence of the correlation length is presented. 

1. Introduction 

It is observed for many chemical reactions that fluctuations lead to the spatial decompo- 
sition of the system (Horsthemke and Lefever 1984). In this paper we are concerned 
with the mathematical analysis of this phenomenon. We describe the chemical reaction 
using a stochastic reaction-diffusion equation, which is solved within the linear approxi- 
mation. On the basis of this solution the information on the correlations in the system 
may be obtained directly from the correlation function or, as is presented in this paper, 
by the correlation length. 

To make our results general we consider a chain reaction (Kondratiev and Nikitin 
1981), because this model is widely used for the description of different chemical 
processes. For example, in the application to the combustion phenomena, where the 
influence of fluctuations on the behaviour of the system is prominent, the approach 
based on a chain reaction is called the Zeldovich-Linan model (Peters 1985). 

The simplest kinetic scheme for the development of a chain reaction is the following 
(Kondratiev and Nikitin 1981): 

I - x  initiation 

X+A- 2X chain branching 
k ,  

k ,  

k4 

A + X + M -  P + M  chain termination 

X + X -  X + A  recombination 

5 Permanent address:  Institute of Physical Chemistry, Polish Academy of Sciences, Kasprraka 44/52, 
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where X denotes the molecule of the active component and A, P, M denote molecules 
of precursor states and the product. 

Usually at the early stages of the chain reaction recombination is neglected. When 
we assume that the system is homogeneous then its time evolution may be described 
by the following rate equation: 

-- - I + ( a  - b ) C x  dCx 
dr  

where C A ,  Cv, Cx are the concentrations of A, M and X respectively. In  general, a 
and 6 depend on the external parameters like temperature or pressure. Usually the 
rate constant a, which corresponds to the chain branching, depends on temperature 
more strongly than the rate constant b, which is connected with the chain termination. 
This means that we can change the sign of a - b = cy by changing the temperature of 
the system. However (see ( 1 ) )  when cy < 0 the concentration Cx approaches the stable 
value, whereas for a>O the behaviour of the system is explosive. Thus in the 
neighbourhood of the transition a = 0 the system is very sensitive to small changes of 
the control parameters. Hence it can be expected that fluctuations of the external 
parameters play an important role. In this respect a system with chain reaction is 
similar to others where the fluctuations of control parameters are important (Hor- 
sthemke and Lefever 1984). 

The model of chain reaction can also describe the behaviour of the chemical system 
near its equilibrium state. Let us assume that the deterministic rate equation, possibly 
non-linear, is 

I f  Cx, is an equilibrium state ( F (  Cx,) = 0 and F'(  C x , )  CO) then for Cx in the 
neighbourhood of Cxe the rate equation is 

(the terms of the orders ( C x  - Cx,)' and higher are neglected in (3)).  Local fluctuations 
of temperature can locally change the rate constant and therefore lead to a non- 
homogeneous spatial distribution of concentration. From the mathematical point of 
view equations (1 )  and (3)  are identical and the method we present here may be applied 
to study the correlations in such cases. 

2. Homogeneous fluctuations of the reaction rate 

To study the influence of homogeneous fluctuations on the behaviour of the system 
let us assume that the parameter cy is a stochastic quantity: 

c y ( r ) = a o + t ( r )  (4) 
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where a. is a constant and 5( t )  is a rapidly fluctuating random term. It is convenient 
to assume that e ( ? )  is white noise with dispersion To 

( 5 ( t ) )  = 0 ( 5 )  

( 5 ( t ) 5 ( s ) ) = T o G ( t - s )  ( 6 )  

where (. . .) denotes an average. 
Equation (1) is now replaced by the following stochastic differential equation: 

-- - I + a"C, + 5( t ) C, . d CX 
d t  

( 7 )  

The linear stochastic differential equation is widely discussed in the literature (Gardiner 
1983) and the general form of its solution is known. However the solution of equation 
( 7 )  depends on whethcr i t  is regarded as an Ito or as a Stratonovich stochastic differential 
equation (SDE). In  the following we will assume that this equation is an Ito SDE, as 
this interpretation sec ms to be more justified from the physical point of view. Treating 
( 7 )  as a Stratonovich S D E  we get the unphysical result that (C,)( t )  - exp( r , , t / 2 )  when 
I = O  and a,=O. 

Within the Ito calculus we have the following formulae for the average value of 
Cx and its dispersion: 

+ ( [ / a , , +  C d '  exp(2aIjt)[exp(r, ,r)  - 11 (9) 

where C,, denotes the initial concentration of X .  
It may be noticed that the stability condition for the (C,)( a,, < 0) is different from 

the stability condition for the dispersion ( 2 a l ~ + r 0 < 0 ) .  I t  can be easily proved that 
there is no uniform stability condition for all moments of the random function C,( 1 )  
described by equation (7).  For any values of ag  and To (r,, # 0) there exists an integer 
n such that all the moments of C,( 1 )  of the order m ( m  > n )  diverge. On the other 
hand, if the moment (C:( 1 ) )  is stable then all the moments of lower order are stable 
too. 

To avoid the problem of the stability of the higher moments and  to make the 
mathematical model of a chain reaction more complete it is necessary to include the 
term corresponding to recombination ( -  k4C$, no random character of k ,  assumed) 
to equation ( 7 ) .  It can be shown that in this case 

which proves that no moments diverge. However equation ( 7 )  with the recombination 
term added is more complicated than the linear one. In  the following we will assume 
that for the processes we are studying the recombination term may be neglected. 
Therefore in the linear regime a,<O ensures the stability of the average value and 
2a0+ To < 0 is the condition for stability of dispersion. 
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The correlation length is connected with the second moment of concentration (20). 
Therefore one can expect that when the conditions for stability of dispersion are 
satisfied then the linear model leads to a reasonable result. On the other hand, when 
the second moment of Cx is unstable then the linear theory can describe the correlations 
in the initial period only and the non-linear effects have to be taken into account for 
the analysis of long time behaviour. 

Numerical tests show that when the stability condition for (( 6CX)*) is satisfied and 
when the recombination term is small then equations (8) and (9) well describe the 
evolution of the system. When ((cSC,)~) diverges the non-linear term in equation (9) 
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Figure 1. The time evolution of the average concentration (C, )  and its dispersion. The 
comparison of the computer simulation of the stochastic differential equation (broken 
curve): 

x = I + (a,+ ( ( 1 ) ) x  - EX*  ( I  = 1, a, = -0.5, F = 0.01) 

with the linear Ito stochastic differential equation ( E  = 0, full curve). ( a )  Stable case (r, = $, 
800 equations). ( b )  Unstable case (ro= 1.11, 4000 equations). 
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plays an  important role, but the evolution of the system in the initial period can be 
also well approximated using equations (8) and  (9). The comparison of the computer 
simulation of 800 and 4000 stochastic differential equations X = I + (a,+ &( t ) ) X  - &X2 
with the results obtained from equations (8) and (9) is presented in figure 1. 

3. Non-homogeneous fluctuations 

The model of the kinetics of the chain reaction with a fluctuating reaction rate can be 
generalised to include noise-induced spinodal decomposition. Now the evolution of 
the system is governed by a stochastic reaction-diffusion equation: 

where Cx(r ,  t )  describes the local concentration of X ,  ( ( r ,  t )  is the local noise and  D 
is the diffusion coefficient. To write equation (11) it is necessary to assume that the 
concentrations of A and M are homogeneous and constant. 

Let us assume that both Cx(r ,  t )  and t ( r ,  t )  can be described as a sum of 
homogeneous and non-homogeneous terms and that the first one plays the more 
important role: 

(12) cX(r, t ) =  cx(t)+ eX(r, t )  

5 ( r ,  t )  = t ( r ) + & r ,  t )  

where Ex( r, t )  << Cx( t )  and 

where 

( 5 ( r ) t ( s ) )  = r o 8 ( t  - s) 

( i ( r ,  t )&u, s ) j = r ~ ( t - s ) 8 ( r - u ) .  

(13) 

The assumption that the non-homogeneous part of Cx(r ,  t )  is small is justified 
when we study the growth of local fluctuations of concentration in the initial period 
of a reaction starting from a homogeneous state. 

Substituting (12) and (13) into (10) we obtain 

and 

From the inequality ex( r2 t )  << Cx( t )  it follows that i( r, t)Cx( r, 1 )  << i( r, r)Cx( t )  and 
therefore the term $(r,  t ) C x ( r ,  t )  is neglected in (15). As might be expected the local 
fluctuations of the parameters of reaction act as a source for local fluctuations of Cx. 

Taking the Fourier transform of (15) we obtain 

where ({(q, t ) i ( p ,  s)) = r / ( 2 ~ r ) ~ 8 ( q + p ) 8 ( t  - 3 )  and d denotes the dimension of space. 
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It is obvious that (e,( q, t ) )  = 0. From equation ( 16) we have the following formula 
for the correlation function ( e x ( p ,  t)ex(q, t ) )  

( C A P ,  t)ex(s, t ) )  

= r/ (2  n ) d 6  (9  + p )  1 ' d s  exp[ (2a0  + ro - 2Dq')( t - s)]( C,( 2)'). (17) 

When 2a + r,)> 0 a phenomenon analogous to a spinodal decomposition in phase 
transition appears (Gunton et al 1983). The Fourier components of C,( r, 1) with the 
wavevector q shorter than the critical value 

0 

will grow with time. This means that a local fluctuation which extended over a region 
of a typical size larger than IC will grow. The condition for the stability of the system 
against local fluctuations 2a0-I- < 0 is the same as the condition for stability of the 
system with respect to the global fluctuations. I t  may be noticed that the strength of 
local fluctuations (r)  has no influence on the stability condition, but in our model this 
is the consequence of neglecting the term ((4, t)?,(q, t )  in equation (15 ) .  Within the 
model presented the dispersion of the local noise only scales the correlation function. 

Taking the inverse Fourier transform of (17) we obtain the correlation function in 
the real space: 

S ( r ,  U, r ) = ( C x ( r ,  t )C,(u,  t ) ) - - ( C x ( r ,  t ) ) (C,(u,  

= ( i 8 C , ) % t ) + ( e X ( r ,  t ) e , ( u ,  t ) )  

The propagation of spatial correlation in the system can be characterised by the 
time-dependent correlation length l (  t )  defined as 

In our case the correlation length can be written as the sum of two terms connected 
with the contribution from local and global fluctuations: 

where 

G(  t )  = V'(( 6C,)')( t )  + VI- ds (  C,(s)') exp[ (2a,+ r,)( t - s)] 1,: 
and V is the volume of the system. 
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Let us notice that when ((6C,)’) is very small then for time t + O  formula (21) gives 

(22) I ? (  t )  = 2 0  dt. 

I f  we assume that ((SC,)’) may also be neglected for long times and that (C:) is 
constant (which is a quite crude approximation within our theory) then the correlation 
length is given by 

It is worthwhile mentioning that the results (22) and (23) predict the same character 
of growth for the local correlation as was observed for the case of local fluctuations 
in the TDGL model (de  Pasquale et a1 1985). 

However, if we include the first term of (21 j the situation is different. Our system 
is homogeneous for t = 0 and  if there is no local fluctuations i t  will remain homogeneous 
all the time. In the homogeneous system the correlation length is of the order of the 
system dimension. The presence of local fluctuations destroys the homogeneity and 
it can reduce the correlations. To discuss the time behaviour of the correlation length 
let us apply formula (21) in the case when the average value of the concentration in 
the system is constant (C,,,= --l /a, ,) .  Then 

, j d r r ’  4DdT 
l-(fj=- 

V 

The first term describes the correlation length of the homogeneous system and the 
following shows its change caused by the local fluctuations. Usually 

When the system is in the stable state (2a ,+T, ,<0)  then 

This result says that the system approaches a new stable state where the correlations 
are disturbed by the presence of non-local fluctuations and so the correlation length 
is shorter. 

When applying formula (24) to the case of unstable state ( 2 a , , + r o > 0 )  we first 
observe the decrease of the correlation length. However, for long times the term 
proportional to t 2  in the denominator of (24) becomes more important and then the 
square of the correlation length is proportional to time. This result is a consequence 
of the formula (19) for the correlation function, which says that in the unstable state 
the correlations between two distant points increase in time. However this result is 
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obtained assuming that C,( t )  >> ex( r, t ) ,  which condition is not satisfied in the unstable 
case for long time. A more careful analysis involving the term $( r, f)e,( r, t )  is necessary 
to make the description complete. 

The comparison of the theory presented above with the numerical simulations of 
one-dimensional stochastic systems are presented in figure 2. The one-dimensional 
array of 60 points with the periodic boundary conditions has been chosen as the 
reference system. Of course, formula (24) applies to the infinite system and its use for 
the finite one is an approximation. For the system in the stable state the agreement is 
reasonable. For the unstable system both results are close in the initial period only 
and then formula (24) fails predicting the correlation length higher than in the 
homogeneous case which might be connected with the fact that (24) applies for the 
infinite systems. Nevertheless it is worthwhile to notice that the linear theory predicts 
at least qualitatively the changes of correlation length caused by non-homogeneous 
noise. 

Concluding our discussion we would like to mention that the chain mechanism of 
chemical reaction is characteristic for many fast chemical processes such as, for 
example, explosions at low temperatures and pressures (Kondratiev and  Nikitin 1981). 
The simple stochastic model presented above predicts the non-equilibrium character 
of evolution as well as some insight into the noise-induced spatial disorder. 

It seems that this model can also describe the spatial decomposition in the laser- 
heated systems. It is known that the power of laser radiation fluctuates (Degiorgio 
1982) and  therefore the laser is a n  excellent source of external fluctuations. As far as 

310 
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270 

01 1 
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Figure 2. The time evolution of the correlation length of one-dimensional array of 60 
points with the periodic boundary conditions (full  curve, result of formula (22); open 
circles, computer simulation). ( 0 )  Stable case (r,=Q, r =  1, D =  1 ) .  ( b )  Unstable case 
(r, = 4, r = 1, D = 20). The square of the correlation length of the homogeneous system 
is 300. The estimated statistical error of the correlation length is 10 units for ( a )  and 5 
units for ( b ) .  
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we know the spatial decomposition may be observed when the reagents in a diamond 
anvil cell are heated with the use of laser radiation. 
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